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Abstract. A 3-body encounter is defined as the moment in time at which the largest pairwise
separation among the three bodies is the smallest, and such an encounter is considered “interesting”
if this separation is below some threshold ε. I calculate the rate of 3-body encounters undergone by
a reference body with velocity v0, given that all bodies move at constant speeds in one dimension,
their density is n per unit length, and the probability density function of their velocities is f(v).
The result is that the rate linearly depends on ε and quadratically on n. The dependence of the
3-body encounter rate on the velocity v0 is calculated analytically for a simple model representing
pedestrian movement in a street. For this model, the encounter rate is the lowest at low velocities
of the reference body, and increases linearly for high velocities.

1. Formulation of the problem

A one-dimensional space is occupied by bodies at a density of n per unit length. Each body has a
constant speed drawn from a velocity distribution f(v), where v could be positive or negative. Given
that the velocity of one of the bodies (henceforth the reference body) is v0, the goal is to compute
the 3-body encounter rate (i.e. encounters per unit time), defined mathematically below. This could
be applied, for example, to pedestrians walking in a street, where a 3-body encounter corresponds to
one pedestrian passing another, when at almost the same time being passed by a third from behind,
or encountering a third coming from the opposite direction. The simplifying assumptions are that
each body moves independently at a constant speed, and encounters do not induce a change.

Let us denote the velocity of body i by vi and its position at time t = 0 as ai. The equation of
motion is therefore xi(t) = ai + vit. The path is a linear function in x-t space. A 2-body encounter
can be more simply defined as the time of crossing of two paths. In mathematical terms, an 2-body
encounter between pedestrians i and j occurs at some time tenc when xi(tenc) = xj(tenc) is satisfied.
A 3-body encounter is a more complicated concept. Three lines generally do not cross at the same
point (unless they are finely tuned to do so). However, for each triplet of lines we can still find a
time in which the maximum separation between each pair is the smallest. In mathematical terms,
a 3-body encounter of bodies i, j and k occurs at some time tenc when the function

s(t) = max(|xi − xj |, |xi − xk|, |xj − xk|)

has a minimum. Unlike a 2-body encounter, a 3-body encounter will have a property δ ≡ s(tenc)
which I call the encounter parameter. An encounter is considered “interesting” if δ is smaller than
some threshold ε.

2. Encounter time and parameter

Let us consider three bodies, their initial positions and speeds are subscriptted with i, j, and k.
We can assume without loss of generality that vi > vj > vk. Among these three bodies, there are of
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course three 2-body encounters, the times are

tij = −ai − aj
vi − vj

tik = −ai − ak
vi − vk

(2.1)

tjk = −aj − ak
vj − vk

We can show that tik always lies between the other two. We do this by writing tik = αtij +(1−α)tjk
where α = (vi − vj)/(vi − vk) < 1. We do not know which of tij or tjk is larger; both cases are
possible. Let us consider first the case where tij < tik < tjk. The function s is

s(t) =


xk − xi = ak − ai + (vk − vi)t t < tij

xk − xj = ak − aj + (vk − vj)t tij < t < tik

xi − xj = ai − aj + (vi − vj)t tik < t < tjk

xi − xk = ai − ak + (vi − vk)t tjk < t

Each segment of s(t) is a straight line; the first two have negative slopes and the last two have
positive slopes. Therefore the minimum must be exactly at tik, which means the encounter time is
tenc = tik and the encounter parameter δ = s(tik) can be found by substituting tik into the second
or third segments of s(t). By doing so and also considering the opposite case where tjk < tik < tij ,
we find that

(2.2) δ =
1

vi − vk
|vi(aj − ak) + vj(ak − ai) + vk(ai − aj)| .

3. Encounter rate at fixed velocities

Given the speed v0 of the reference body and the speeds v1 and v2 of two other bodies, what is
the 3-body encounter rate? We need to consider three separate cases, namely that the reference
body is i, j, or k. In other words, weather the reference body has the highest speed in the positive
direction, or it is the second or third in that order. The method of finding the rate is based on
counting the number of encounters with δ < ε between some time t0 and another time t0 + ∆t; the
rate would be the number of encounters in this period divided by ∆t. The reference body has some
specific initial position a0 (we do not expect the rate to depend on it), the initial positions of the
two other bodies a1 and a2 can be anything. Some value combinations will satisfy the conditions
δ < ε and t0 < tenc < t0 + ∆t while others will not. These two conditions define a region in a1-a2
space and its area is proportional to the number of encounters. If the area is A, the rate is

(3.1) r =
n2A

∆t

3.1. Reference body is i . It is easy to see from Equations (2.1) and (2.2) that the region is
a parallelogram in aj-ak space with one side parallel to the aj-axis the other one has slope of
(vi− vk)/(vi− vj). To calculate the area, we just find the height and base of the parallelogram. The
height is simply ∆ak = ∆t(vi − vk) and the base is ∆aj = 2ε. The area is therefore

(3.2) Ai = 2ε∆t(vi − vk).

3.2. Reference body is j . In this case, from the same equations we can see that the region is also
a parallelogram in ai-ak space. One side is at 45◦ and the other has a slope of −(vi − vk)/(vi − vj).
This time we calculate the area by constructing a rectangle with edges parallel to the axes and that
contains the parallelogram. The relevant area is then the area of this rectangle minus the areas of
two pairs of identical triangles. In mathematical terms

Aj = (∆ai + bi)(∆ak + bk)− 2·12∆ai∆ak − 2·12bibk = ∆aibk + ∆akbi
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Figure 3.1. For the case where the reference body is i (largest speed in the positive
direction), the area in aj-ak space where the encounters satisfy δ < ε and t0 < tenc <
t0 + ∆t is a parallelogram as shown.

ai

ak

� =
 �

t en
c 
=
 t 0

t en
c 
=
 t 0

 +
 �
t

B

C
bi

bk

Figure 3.2. Same as Figure 3.1 for the case where the reference body is j.

where bi and bk are auxiliary quantities defined in Figure 3.2. The quantities:∆ai and ∆ak are
identical and equal 2ε because of the 45◦ slope. We find bi and bk from the coordinates of points B
and C shown in the figure. B is the intersection of tenc = t0 and δ = ε, which is at

ai,B = aj − ε− (vi − vj)t0
ak,B = aj − ε+ (vj − vk)t0

The point C is the same with t0 → t0 + ∆t. Thus,

bi = ai,B − ai,C = (vi − vj)∆t
bk = ak,C − ak,B = (vj − vk)∆t

and finally

(3.3) Aj = 2ε∆t(vi − vk)

as in the previous case.
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Figure 4.1. A diagram showing the different cases for v1 > v2: the shaded regions
show where the reference body is i (blue), j (green), and k (red).

3.3. Reference body is k . This is very similar to the first case, and just from symmetry consid-
erations we can see that the result here is the same

(3.4) Ak = 2ε∆t(vi − vk)

4. Integrating over velocities

For each of the three cases discussed above, there are two sub-cases, namely v1 > v2 and v2 > v1
(regardless of the position of v0 in the order). Without loss of generality we assume the former; from
symmetry the rate when the opposite is true is equal, so the result should be multiplied by two.
From Equation (3.1) and the results for A given in Equations (3.2), (3.3), and (3.4) we know the rate
given any pair (v1, v2). The joint probability to draw two velocities in an infinitesimal environment
dv1dv2 around (v1, v2) is f(v1)f(v2)dv1dv2, which is the weight given to the rate calculated from
these velocities. The integration limits are easy to see in Figure 4.1. The general expression for the
3-body encounter rate is thus

r3b = 4n2ε

[ ∫ v0

−∞
dv2

∫ v0

v2

dv1 f(v1)f(v2)(v0 − v2)

+

∫ v0

−∞
dv2

∫ ∞
v0

dv1 f(v1)f(v2)(v1 − v2)

+

∫ ∞
v0

dv2

∫ v2

v0

dv1 f(v1)f(v2)(v1 − v0)
]
.

We can somewhat simplify this as follows:

(4.1) r3b = 4n2ε

[∫ ∞
−∞
|v − v0||F (v)− F (v0)|f(v)dv −

∫ v0

−∞
vf(v)dv + F (v0)〈v〉

]
where

F (v) ≡
∫ v

−∞
f(v′)dv′

is the cumulative distribution function and

〈v〉 ≡
∫ ∞
−∞

v′f(v′)dv′

is the average velocity.
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Figure 6.1. The 2- and 3-body encounter rate as a function of the reference body’s
speed, and where the other bodies’ velocity distribution is a made up of two rectan-
gular functions with widths w around ±V . For the purpose of this plot we assumed
V = 5 km h−1, w = 2 km h−1, n = 120 km−1 (representing a mildly busy street in
Budapest), and ε = 0.5 m (representing a lower limit on comfortable personal space).

5. Rate of 2-body encounters

For comparison it is useful to also consider the 2-body encounter rate. Let us first assume that
all bodies have the same velocity v except the reference body, which has velocity v0. The encounter
time with a particular body with initial position a is

tenc = −a0 − a
v0 − v

As the average distance between pedestrians on the x-axis at t = 0 is ∆a = n−1, the average time
between encounters is

∆t =

∣∣∣∣ ∆a

v0 − v

∣∣∣∣ =
1

n|v0 − v|

Thus, the rate is

r2b = n|v0 − v|

and in the general case we just integrate over all possible velocity differences:

(5.1) r2b = n

∫ +∞

−∞
|v − v0|f(v)dv.

Note that every 3-body encounter is also a 2-body encounter. A 2-body encounter is also a 3-body
encounter iff there exist a third body within ε from the pair undergoing the 2-body encounter at
the time of their encounter. A single 2-body encounter could count as multiple 3-body encounters,
if there are multiple bodies that satisfy the distance condition. Note however that every triple of
bodies have a single 3-body encounter, which is the 2-body encounter in which s is the smallest
(regardless of ε). Therefore, when the average distance between bodies ∆a = n−1 is smaller than ε,
the environment is “crowded” and the 3-body encounter rate can surpass the 2-body rate.
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6. Model for pedestrian motion

We consider a very simple model for pedestrian motion where the velocities are drawn from a
double rectangular distribution:

f(v) =



0 v < −V − 1
2w

1
2w −V − 1

2w < v < −V + 1
2w

0 −V + 1
2w < v < V − 1

2w
1
2w V − 1

2w < v < V + 1
2w

0 V + 1
2w < v

In this case, the velocity probability density is uniformly distributed in two intervals, one at an
environment ∆v = w around v = −V , and the other around v = V , and is zero elsewhere. This
simple model does not account for standers and joggers (which could be modeled by having additional
peaks around v = 0 and around v > V ), as well as “binaries” or “multiples” (groups of two or more
pedestrians walking together).

Analytical integration of Equation (4.1) is possible in this case, and the result is (v is now the
velocity of the reference body):

r3b(v) = 4n2ε


3V + 1

6w 0 < v < V − 1
2w

1
w

[
v2 + (w − 2V )v + V 2 + 2wV + 5

12w
2
]

V − 1
2w < v < V + 1

2w

2v + V + 1
6w V + 1

2w < v

The function is of course symmetric around v = 0, so only positive values are shown. Numerical
integration when f(v) is a sum of two normal probability density functions, each centered around
v = ±V shows qualitatively similar results with a constant rate for small v and linear growth of the
rate for large v (with smooth transition between these regions). The rate of 2-body encounter is
calculated from Equation (5.1), giving

r2b(v) = n


V 0 < v < V − 1

2w
1
2w

[
v2 + (w − 2V )v + (V + 1

2w)2
]

V − 1
2w < v < V + 1

2w

v V + 1
2w < v

The ratio r3b/r2b is ≈ 12nε for small velocities and ≈ 8nε for large velocities.
We can also consider the number of encounters per unit length by dividing r3b by v. The result

is a monotonically decreasing functions of v, with an asymptotic values of 8n2ε for v � V . Thus,
the number of encounters per unit length approaches a constant as v increases. A similar behavior
is seen for the 2-body encounter, with an asymptotic value of n (which can be expected intuitively).

Figure 6.1 shows the encounter rate as a function of the reference body velocity, where V =
5 km h−1, w = 2 km h−1, n = 120 km−1 (representing a mildly busy street in Budapest), and ε =
0.5 m (representing a lower limit on comfortable personal space). For these parameters, the 3-body
encounter rate is comparable to the 2-body rate.
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